Best Coursera Courses for Data Science

Here is a list of best coursera courses for data science.

1. Introduction to Data Science Specialization

This data science specialization provided by IBM, which include 4 sub courses. In this Specialization learners will develop foundational Data Science skills to prepare them for a career or further learning that involves more advanced topics in Data Science. The specialization entails understanding what is Data Science and the various kinds of activities that a Data Scientist performs. It will familiarize learners with various open source tools, like Jupyter notebooks, used by Data Scientists. It will teach them about methodology involved in tackling data science problems. The specialization also provides knowledge of relational database concepts and the use of SQL to query databases. Learners will complete hands-on labs and projects to apply their newly acquired skills and knowledge.

1) What is Data Science?
2) Open Source tools for Data Science
3) Data Science Methodology
4) Databases and SQL for Data Science

2. Applied Data Science Specialization

This data science specialization also provided by IBM, which include 4 sub courses. This is an action-packed specialization is for data science enthusiasts who want to acquire practical skills for real world data problems. It appeals to anyone interested in pursuing a career in Data Science, and already has foundational skills (or has completed the Introduction to Applied Data Science specialization). You will learn Python – no prior programming knowledge necessary. You will then learn data visualization and data analysis. Through our guided lectures, labs, and projects you’ll get hands-on experience tackling interesting data problems. Make sure to take this specialization to solidify your Python and data science skills before diving deeper into big data, AI, and deep learning.

1) Python for Data Science
2) Data Visualization with Python
3) Data Analysis with Python
4) Applied Data Science Capstone

3. Applied Data Science with Python Specialization

The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have basic a python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data. Introduction to Data Science in Python (course 1), Applied Plotting, Charting & Data Representation in Python (course 2), and Applied Machine Learning in Python (course 3) should be taken in order and prior to any other course in the specialization. After completing those, courses 4 and 5 can be taken in any order. All 5 are required to earn a certificate.

1) Introduction to Data Science in Python
2) Applied Plotting, Charting & Data Representation in Python
3) Applied Machine Learning in Python
4) Applied Text Mining in Python
5) Applied Social Network Analysis in Python

4. Data Science Specialization

This data science specialization provides by Johns Hopkins University, which covers the concepts and tools you’ll need throughout the entire data science pipeline, from asking the right kinds of questions to making inferences and publishing results. In the final Capstone Project, you’ll apply the skills learned by building a data product using real-world data. At completion, students will have a portfolio demonstrating their mastery of the material. The specialization includes 10 sub courses:

1) The Data Scientist’s Toolbox
2) R Programming
3) Getting and Cleaning Data
4) Exploratory Data Analysis
5) Reproducible Research
6) Statistical Inference
7) Regression Models
8) Practical Machine Learning
9) Developing Data Products
10) Data Science Capstone

5. Data Science at Scale Specialization

This data science specialization provides by University of Washington, which covers intermediate topics in data science. You will gain hands-on experience with scalable SQL and NoSQL data management solutions, data mining algorithms, and practical statistical and machine learning concepts. You will also learn to visualize data and communicate results, and you’ll explore legal and ethical issues that arise in working with big data. In the final Capstone Project, developed in partnership with the digital internship platform Coursolve, you’ll apply your new skills to a real-world data science project. The specialization includes 4 sub courses:

1) Data Manipulation at Scale: Systems and Algorithms
2) Practical Predictive Analytics: Models and Methods
3) Communicating Data Science Results
4) Data Science at Scale – Capstone Project

6. Advanced Data Science with IBM Specialization

This data science specialization also provided by IBM, which include 4 sub courses. As a coursera certified specialization completer you will have a proven deep understanding on massive parallel data processing, data exploration and visualization, and advanced machine learning & deep learning. You’ll understand the mathematical foundations behind all machine learning & deep learning algorithms. You can apply knowledge in practical use cases, justify architectural decisions, understand the characteristics of different algorithms, frameworks & technologies & how they impact model performance & scalability.

1) Fundamentals of Scalable Data Science
2) Advanced Machine Learning and Signal Processing
3) Applied AI with DeepLearning
4) Advanced Data Science Capstone

7. Genomic Data Science Specialization

This data science specialization provides by Johns Hopkins University, which covers the concepts and tools to understand, analyze, and interpret data from next generation sequencing experiments. It teaches the most common tools used in genomic data science including how to use the command line, Python, R, Bioconductor, and Galaxy. The sequence is a stand alone introduction to genomic data science or a perfect compliment to a primary degree or postdoc in biology, molecular biology, or genetics. To audit Genomic Data Science courses for free, visit https://www.coursera.org/jhu, click the course, click Enroll, and select Audit. The specialization includes 8 courses:

1) Introduction to Genomic Technologies
2) Genomic Data Science with Galaxy
3) Python for Genomic Data Science
4) Algorithms for DNA Sequencing
5) Command Line Tools for Genomic Data Science
6) Bioconductor for Genomic Data Science
7) Statistics for Genomic Data Science
8) Genomic Data Science Capstone

8. Data Mining Specialization

This data science specialization provides by Illinois State University, which teaches data mining techniques for both structured data which conform to a clearly defined schema, and unstructured data which exist in the form of natural language text. Specific course topics include pattern discovery, clustering, text retrieval, text mining and analytics, and data visualization. The Capstone project task is to solve real-world data mining challenges using a restaurant review data set from Yelp. Courses 2 – 5 of this Specialization form the lecture component of courses in the online Master of Computer Science Degree in Data Science. You can apply to the degree program either before or after you begin the Specialization. The specialization includes 6 courses:

1) Data Visualization
2) Text Retrieval and Search Engines
3) Text Mining and Analytics
4) Pattern Discovery in Data Mining
5) Cluster Analysis in Data Mining
6) Data Mining Project

9. Data Analysis and Interpretation Specialization

Learn SAS or Python programming, expand your knowledge of analytical methods and applications, and conduct original research to inform complex decisions. The Data Analysis and Interpretation Specialization takes you from data novice to data expert in just four project-based courses. You will apply basic data science tools, including data management and visualization, modeling, and machine learning using your choice of either SAS or Python, including pandas and Scikit-learn. Throughout the Specialization, you will analyze a research question of your choice and summarize your insights. In the Capstone Project, you will use real data to address an important issue in society, and report your findings in a professional-quality report. You will have the opportunity to work with our industry partners, DRIVENDATA and The Connection. Help DRIVENDATA solve some of the world’s biggest social challenges by joining one of their competitions, or help The Connection better understand recidivism risk for people on parole in substance use treatment. Regular feedback from peers will provide you a chance to reshape your question. This Specialization is designed to help you whether you are considering a career in data, work in a context where supervisors are looking to you for data insights, or you just have some burning questions you want to explore. No prior experience is required. By the end you will have mastered statistical methods to conduct original research to inform complex decisions.

1) Data Management and Visualization
2) Data Analysis Tools
3) Regression Modeling in Practice
4) Machine Learning for Data Analysis
5) Data Analysis and Interpretation Capstone

10. Executive Data Science Specialization

Assemble the right team, ask the right questions, and avoid the mistakes that derail data science projects. In four intensive courses, you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You’ll get a crash course in data science so that you’ll be conversant in the field and understand your role as a leader. You’ll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You’ll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you’ll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects.

1)A Crash Course in Data Science
2)Building a Data Science Team
3)Managing Data Analysis
4)Data Science in Real Life
5)Executive Data Science Capstone

11. Other Useful Data Science Common Courses:

1) Data Science Math Skills
2) Data Science Ethics
3) How to Win a Data Science Competition: Learn from Top Kagglers

Posted by BestCourseraCourses, Post Link: https://bestcourseracourses.com/best-coursera-courses-for-data-science/

Best Coursera Courses for Machine Learning

Here is a list of best coursera courses for machine learning.

1. Machine Learning

As the first machine learning mooc course, this machine learning course provided by Stanford University and taught by Professor Andrew Ng, which is the best machine learning online course for everyone who want to learn machine learning. The content include:

  • Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks).
  • Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning).
  • Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI).

2. Machine Learning Specialization

This Machine Learning specialization provided by University of Washington, which provides a case-based introduction to the exciting, high-demand field of machine learning. Students will learn to analyze large and complex datasets, build applications that can make predictions from data, and create systems that adapt and improve over time. In the final Capstone Project, students will apply their skills to solve an original, real-world problem through implementation of machine learning algorithms. The Machine Learning specialization include 4 sub related courses:

1) Machine Learning Foundations: A Case Study Approach

This is the first course of the Machine learning specialization, which will make students get hands-on experience with machine learning from a series of practical case-studies. By the end of the course, student will be able to:

  • Identify potential applications of machine learning in practice.
  • Describe the core differences in analyses enabled by regression, classification, and clustering.
  • Select the appropriate machine learning task for a potential application.
  • Apply regression, classification, clustering, retrieval, recommender systems, and deep learning.
  • Represent your data as features to serve as input to machine learning models.
  • Assess the model quality in terms of relevant error metrics for each task.
  • Utilize a dataset to fit a model to analyze new data.
  • Build an end-to-end application that uses machine learning at its core.
  • Implement these techniques in Python.

2)Machine Learning: Regression

This is the second course of the Machine learning specialization. In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data — such as outliers — on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets. Learning Outcomes: By the end of this course, you will be able to:

  • Describe the input and output of a regression model.
  • Compare and contrast bias and variance when modeling data.
  • Estimate model parameters using optimization algorithms.
  • Tune parameters with cross validation.
  • Analyze the performance of the model.
  • Describe the notion of sparsity and how LASSO leads to sparse solutions.
  • Deploy methods to select between models.
  • Exploit the model to form predictions.
  • Build a regression model to predict prices using a housing dataset.
  • Implement these techniques in Python.

3) Machine Learning: Classification

This is the third course of the Machine learning specialization. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier.

4) Machine Learning: Clustering & Retrieval

This is the fourth course of the Machine learning specialization. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python.

3. Mathematics for Machine Learning Specialization

This Mathematics for Machine Learning Specialization provided by Imperial College London, which let students learn about the prerequisite mathematics for applications in data science and machine learning. The Machine Learning specialization include 3 courses:

1) Mathematics for Machine Learning: Linear Algebra

This is the first course of the Mathematics for Machine Learning Specialization. In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets – like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.

2) Mathematics for Machine Learning: Multivariate Calculus

This is the second course of the Mathematics for Machine Learning Specialization, which intended to offer an intuitive understanding of calculus, as well as the language necessary to look concepts up yourselves when you get stuck. Hopefully, without going into too much detail, you’ll still come away with the confidence to dive into some more focused machine learning courses in future.

3) Mathematics for Machine Learning: PCA

This is the third course of the Mathematics for Machine Learning Specialization. This course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We’ll cover some basic statistics of data sets, such as mean values and variances, we’ll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we’ll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you’ll be familiar with important mathematical concepts and you can implement PCA all by yourself.

4. Advanced Machine Learning Specialization

This Advanced Machine Learning Specialization provided by National Research University Higher School of Economics and Yandex, which let students Deep Dive Into The Modern AI Techniques, and teach computer to see, draw, read, talk, play games and solve industry problems. The Machine Learning specialization include 7 courses:

1) Introduction to Deep Learning
2) How to Win a Data Science Competition: Learn from Top Kagglers
3) Bayesian Methods for Machine Learning
4) Practical Reinforcement Learning
5) Deep Learning in Computer Vision
6) Natural Language Processing
7) Addressing Large Hadron Collider Challenges by Machine Learning

Posted by BestCourseraCourses, Post Link: https://bestcourseracourses.com/best-coursera-courses-for-machine-learning

Best Coursera Courses for Deep Learning

Here is a list of best coursera courses for deep learning.

1. Deep Learning Specialization

This deep learning specialization provided by deeplearning.ai and taught by Professor Andrew Ng, which is the best deep learning online course for everyone who want to learn deep learning. The DL specialization include 5 sub related courses:

1) Neural Networks and Deep Learning

This is the first course of the Deep learning specialization, which will tell you what is neural networks and deep learning. It includes 4 part: Introduction to deep learning; Neural Networks Basics; Shallow neural networks; Deep Neural Networks. For people who know or don’t know deep learning, this is the best beginning course for AI.

2) Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

This is the second course of the Deep Learning Specialization, which focus on the “trick” to make the deep learning to work well:

  • Understand industry best-practices for building deep learning applications;
  • Be able to effectively use the common neural network “tricks”, including initialization, L2 and dropout regularization, Batch normalization, gradient checking;
  • Be able to implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence;
  • Understand new best-practices for the deep learning era of how to set up train/dev/test sets and analyze bias/variance;
  • Be able to implement a neural network in TensorFlow.

3) Structuring Machine Learning Projects

This is the third course in the Deep Learning Specialization. Professor Andrew Ng will teach you how to build a successful machine learning project. Most of the course content are drawn from Professor Andrew Ng’s experience from Stanford, Google , Baidu and the industry:

  • Understand how to diagnose errors in a machine learning system;
  • Be able to prioritize the most promising directions for reducing error;
  • Understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance;
  • Know how to apply end-to-end learning, transfer learning, and multi-task learning

4) Convolutional Neural Networks

This is the fourth course of the Deep Learning Specialization, which will teach you how to build convolutional neural networks and apply it to image processing:

  • Understand how to build a convolutional neural network, including recent variations such as residual networks.
  • Know how to apply convolutional networks to visual detection and recognition tasks.
  • Know to use neural style transfer to generate art.
  • Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data.

5) Sequence Models

This is the fifth course of the Deep Learning Specialization, which will tell you how to build models for natural language, audio, and other sequence data:

  • Understand how to build and train Recurrent Neural Networks (RNNs), and commonly-used variants such as GRUs and LSTMs.
  • Be able to apply sequence models to natural language problems, including text synthesis.
  • Be able to apply sequence models to audio applications, including speech recognition and music synthesis.

2. Neural Networks for Machine Learning

This deep learning course provided by University of Toronto and taught by Geoffrey Hinton, which is a classical deep learning course. It provides both the basic algorithms and the practical tricks related with deep learning and neural networks, and put them to be used for machine learning.

3. Introduction to Deep Learning

This entry-level deep learning course belongs to the “Advanced Machine Learning Specialization“, which provided by Higher School of Economics and Yandex. The goal of this course is to give learners basic understanding of modern neural networks and their applications in computer vision and natural language understanding. In the course project learner will implement deep neural network for the task of image captioning which solves the problem of giving a text description for an input image.

4. Deep Learning in Computer Vision

This deep learning application course belongs to the “Advanced Machine Learning Specialization“, which provided by Higher School of Economics and Yandex. The goal of this course is to introduce students to computer vision, starting from basics and then turning to more modern deep learning models. The course will cover both image and video recognition, including image classification and annotation, object recognition and image search, various object detection techniques, motion estimation, object tracking in video, human action recognition, and finally image stylization, editing and new image generation. In course project, students will learn how to build face recognition and manipulation system to understand the internal mechanics of this technology, probably the most renown and oftenly demonstrated in movies and TV-shows example of computer vision and AI.

5. An Introduction to Practical Deep Learning

This deep learning course provided by Intel and taught by Intel Engineers, which provides an introduction to Deep Learning. Students will explore important concepts in Deep Learning, train deep networks using Intel Nervana Neon, apply Deep Learning to various applications and explore new and emerging Deep Learning topics.

6. Deep Learning for Business

This deep learning business course is provided by Yonsei University and it has three parts, where the first part focuses on DL and ML technology based future business strategy including details on new state-of-the-art products/services and open source DL software, which are the future enablers. The second part focuses on the core technologies of DL and ML systems, which include NN (Neural Network), CNN (Convolutional NN), and RNN (Recurrent NN) systems. The third part focuses on four TensorFlow Playground projects, where experience on designing DL NNs can be gained using an easy and fun yet very powerful application called the TensorFlow Playground. This course was designed to help you build business strategies and enable you to conduct technical planning on new DL and ML services and products.

Posted by BestCourseraCourses, Post Link: https://bestcourseracourses.com/best-coursera-courses-for-deep-learning